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Abstract 

For a cubical tesselation of a finite region of space which contains an irregularly 
shaped surface, a fairly accurate estimate of the surface area is ~-Na 2, where N is the 
total number of cubes cut by the surface and a is the length of the edges of the cubes. 
An estimate of slightly improved accuracy can be obtained by using different increments 
to the surface area, depending on the number of edges of the corresponding cube cut 
by the surface and the number of vertices on either side of the surface. 

1. Introduction 

The volume and the surface area of a molecule play an important role in semi- 
empirical theories relating physical properties and chemical and biological activity 
to molecular structure [1]. There exists a variety of definitions of the "surface" of 
a molecule, and these definitions may be based on different physical concepts [2]. 
In many cases, the solvent accessible surface of a molecule or the portion of its 
surface with steric complementarity with respect to the reactive site of a given 
reagent is of interest [3]. 

The volume of a molecule can readily be computed by decomposing the 
space it occupies using a cubical tesselation. One starts with a fairly large size of 
cubes which would provide merely a rough estimate of its volume. An improved 
estimate can then be obtained by decomposing the cubes which are cut by the 
surface into eight smaller cubes called octants, and those octants which are cut by 
the surface are again decomposed into eight smaller cubes and so on, until the 
volume can be determined with the desired accuracy. This rather efficient technique 
of progressively dividing cubes into smaller ones can be used for the calculation 
of volumes of spatial structures of arbitrary shape [4]. The problem of computing 
surfaces can be reduced to the computation of volumes by converting the surface 
into a sheet of finite uniform thickness h and computing its volume from which the 
surface area A can be obtained as A - V/h. However, for surfaces of arbitrary shape, 
the construction of a sheet of finite uniform thickness may be far from trivial. In 
this case, the method outlined below might be appropriate. 
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2. Method 

It can be shown that if a cube is randomly oriented in space, then its height 
averaged over all orientations in space is ½a, where a denotes the length of  the 
edges of  the cube [5,6]. From this result we conclude that if a plane cuts a randomly 
oriented cube, then on the avcrage the area of the cut will be as follows: 

A A -  ~a 2. (1) 

This means that an estimate of  the surface area of an object can readily be obtained 
in a manner analogous to the computation of volumes. In the calculation of  volumes, 
the cubes in the interior contribute a 3 to the volume and the cubes cut by the 
surface each contribute one half of a 3. For the computation of  surface areas, only 
the cubes cut by the surface contribute to A and the increment is ~ a  2. Of course, 
this method is not exact, regardless of the smallest size of  cubes considered. Take, 
for example, a flat surface parallel to one pair of  faces of  the cubes used in the 
cubical tesselation of  space. In this case, the correct increment to the surface area 
would be a 2 per cube cut by the surface. The proper increment in this case is 
considerably different from the average value of ~a  2 being used. An improved estimate 
of the surface area can be expected from a scheme where we differentiate among 
different types of  cuts. Consider again the example with the flat surface discussed 
above. In this case, all cubes are cut such that there are four vertices on each side 
of the surface, and we could argue that for this type of cut the proper increment 
should be a 2 instead of  ] a  2. 

The cut between a plane and a cube is a polygon with from three to six sides. 
If, for example, one comer is located on one side of the plane and the remaining 
seven comers on the opposite side, then we have a triangular cut, and on an average 
the areas of  triangular cuts tend to be somewhat smaller than the average of  ~ a  2 
which is being used. This observation suggests a slightly more elaborate scheme, 
where the polygonal cuts are classified according to their number of  sides and using 
different increments AA~ for the different types of cuts. Let n e be the number of  
sides of  the cut and n v the smaller one of the number of vertices located on the same 
side of the plane. Then, in general, n~ = n e - 2. There exists, however, a fifth case 
where n,, = n e = 4. For the estimate of the surface area according to (1), the symbol 
A t will be used, i.e. 

A - A  t =~Na 2, (2) 

and A 2 denotes the estimate obtained from the modified scheme outlined above: 

5 

A - a 2  = ~ NkAA k, (3) 
k=l  

where N k represents the number of cubes cut by the surface with the kth 
type of cut for which the increment AA k is added to the surface A. Obviously, 
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Table  1 

Classification scheme for cuts of  a cube by a plane. The cuts are polygons 
with from three to six sides. The quantitities n~ and n v identify the types 
of cuts which are numbered  from 1 to 5, where the index k indicates the 
type. Here, n o indicates the number of sides of the boundaries of the polygonal 
cuts and nv represents the lesser of the numbei  of vertices located on the 
same side of  the plane. The quantities AA k represent the average area for 
the different types of cuts and Pk represents the probabili ty with which the 
corresponding cuts arise, where Y.kPk = 1 and, obviously, ~ k p k A A  k = ~-a ~ 

k n v n~ AAk ~) Pk 

1 l 3 0 .137474172a  2 0 .27982572 

2 2 4 0 .622185068a  2 0.33209571 

3 3 5 1 .05368062a ~ 0 .18693034 

4 4 6 1 .2512237a 2 0.04644769 ~ 

5 4 4 1 .07621810a a 0 .15470054 

~)The last  digits indicated for AA k may be in error by ±2 .  

N 1 + N 2 + N 3 + N 4 + N 5 = N. In table 1, the classification scheme for the above 
five cases is shown together with the computed values for AAk. The simplest method 
for the computation of  the averages AA~ consists of  a Monte Carlo algorithm where 
a cube is cut by a large number of randomly oriented planes. The cuts are subsequently 
classified according to the scheme presented in table 1, the areas of  the cuts are 
computed analytically for each random cut, and the quantities AA k are obtained as 
separate averages for the five different cases. The number of  cuts to be computed 
in a Monte Carlo calculation for the accuracy of  AA~ indicated in table 1 would be 
excessive. The actu'~ numbers shown in table 1 were obtained by numerical integration. 
The values obtained were in agreement with less accurate estimates obtained from 
Monte Carlo calculations. 

3. Results and discussion 

For a large number of spheres with randomly cho~n  radii r and random locations 
of  their centers, estimates A 1 and A 2 of  their surface areas have been computed. In 
each case, the quantities ~ = A 1 / 4 n r  2 and 77 = A2/4:vr  2 were determined. Figure 1 
depicts the ratio r / as  a function of  the variable p, where p = r/a. According to 
fig. 1, the accuracy of  A~ as an estimate of  the area of  a surface of  a sphere with 
radius r can be expected to be 1% or better if p = r/a > 10. 

Notice that for curved surfaces, more cases than indicated in table 1 would 
have to be taken into account. Examples of  types of  cu t sno t  considered in table 1 
would be the ones where the same edge is cut twice by the surface. For surfaces 
with small curvature and/or, equivalently, for small values of  a, such cases are 
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rarely encountered. If  the above algorithms are being implemented in computer 
programs, such additional cases may nevertheless have to be considered. 

When a cube with random orientation in space is cut by a horizontal plane, 
then the probability of  having n b comers below the plane is exactly the same as the 
probability of having 8 - nb comers below the plane. For closed surfaces such as 
spheres or surfaces of  molecules, the locations of  the vertices are such that they are 
either interior or exterior or, on rare occasions, they may be on the surface. The 
probability that one comer is located inside the surface with the remaining seven 
being located outside is found to be somewhat greater than the probability of  having 
one comer outside the closed surface, in contrast to what is observed for cuts by 
a plane. Since the present statistical model is based on cuts by a plane, it might be 
possible to introduce a correction based on the skewness of  the distribution of the 
number of  comers located inside the surface. 

Previously, it was shown that considerable errors could be made using A~ as 
an estimate for the surface area when the surface is completely flat. Using A 2 as 
an estimate for the surface area, for a flat surface oriented parallel to a pair of  faces 
o f  the cubes we would obtain N 1 = N 2 = N 3 = N 4 = 0 and N 5 ~e 0, such that 
A 2 = N s A A  5 = 1.076N 5 and the error would be roughly 7.5%, which is less than a 
quarter of the error resulting from using A 1 as an estimate. Figure 2 shows the 
quantity 7/as a function of p, where r /=  A2/4Jrr  2 for a large number of  "random" 
spheres. A comparison of figs. 1 and 2 reveals that the actual improvement resulting 
from using A 2 instead of A~ as an estimate of  the surface area is rather modest. It 
should be pointed out that the classification of  the cuts is relatively time consuming 
such that thc additional work in computing A 2 may not be worthwhile. 

For benzene, the exact Van der Waals surface area can be determined analytically. 
A rather lengthy calculation shows that, using the Van der Waals radii r c = 1.7 
and r H = 1.2 ]k with bond lengths of  1.4 A and 1.1/~ for the C - H  and the C - H  
bonds, respectively, the area of the Van der Waals surface is 

I{ 522-66 } A = ~r 11 (749"088)1/2 

+00.8 ~ arc tan(1x[(u-u  - x ) ( x - u - 7 ) ) ] - l / 2 ) d x  /~2 (4) 
0 

= 110.3764209 A 2, 

where u = 1.05 and v = (9/5) l~. In table 2, the relative errors in percent for the Van 
der Waals surface area estimated as A 1 and as A 2 are shown for four random orientations 
of  the molecule in space. For a = 0.128 ./~, the Van der Walls radii are about ten 
times larger than a and, according to the above, the accuracy of  A~ as an estimate 
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Table 2 

Relative errors in percent o f  the computed surface areas A 1 and A 2 for 
benzene in four random orientations 01  , 0 2  , 03  , and  0 4  of  the molecule  
in space. The relative errors are computed as fol lows:  

A =~a - A  ,~c 
x 1 0 0 % ,  

A ~xltct 

where Aexac t denotes the exact surface area and Ac~lc = A 1 (upper entries) 
or Acalc = A 2 ( lower entries) 

a [~1 O1 Oz 03 04 

1.024 14.591 11.989 13 .670  15 .530  

8 .167 5 .000  5 .000  10.067 

0 .512  3 .760  3 .889  5 .692  4 .193~ 

0 .250  1.517 3 .100  1 .042 

0 .256  1.715 1 .610 1.741 1 .704 

0 .883  - 0 .067  0 .408  0 .408  

0 .128  1 .002 1.029 1.237 0 .923  

0 .507  - 0 .067  0 .349  0 .201 

0 .064  0 .519  0 .611 0 .643  0.471 

0 .037  - 0 . 2 1 3  - 0 . 1 9 5  - 0 . 1 1 9  

0 .032  0 .327  0 .422  0 .455 0 .285  

- 0 . 032  - 0 .300  - 0 .273  - 0 .247  

0 .016  0 .241 0 .349  0 .352  0 .190  

- 0 . 0 7 8  - 0 . 3 0 4  - 0 . 3 1 0  - 0 . 2 8 6  

should be roughly 1%. According to table 2, the same applies for A 1 as an estimate 
of  the area of  the Van der Waals surface of  benzene. According to ref. [4], using 
cubes with edges of 0 .125/~ length, the surface area of benzene could be computed 
from the volume of  a sheet of uniform thickness of  0 .1/~ with an average relative 
error of  roughly 0.05%, which indicates that the present method is less accurate by 
a factor of  approximately 20 than the method used in ref. [4]. If A 2 were used as 
an estimate, a slightly more favourable outcome would be obtained from a comparison 
between the present method and the method used in ref. [4]. In this case, we would 
obtain a factor of six or seven instead of  twenty. 

Several other molecules have been computed. For example, for the planar 
molecule xanthan hydride (C2H2N2S3), using the structural parameters reported by 
Stanford [71, an average of  132.972/~2 was obtained from 55 random orientations 
in space for A 1, while for A 2 the average was 133.296/~, where the smallest size 
of  cubes considered had edges of  0.04 ~ length. The standard deviations from the 
mean were 0.806 ~2 and 0.513/~2 for k 1 and A 2, respectively. 
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In conclusion, it can be said that with respect to the attainable accuracy the 
present method cannot compete with other methods presently in use which are of  
similar simplicity. However,  in cases where it is difficult to construct a sheet of  
uniform thickness, the method outlined above may provide estimates of  the surface 
areas of molecules with an adequate accuracy. 

A source listing on paper of  a simple computer program in FORTRAN,  with 
which the above method of  computing surface areas of  molecules has been tested, 
can be obtained from the author upon request. 
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